
Publications
Here you will find research Research papers enabled by Fluxim’s development tools

Enhancing Indoor Photovoltaic Efficiency to 37.6% Through Triple Passivation Reassembly and n-Type to p-Type Modulation in Wide Bandgap Perovskites
S. Huang, S. Hou, G. Sanfo, J. Xu, Y. Wang, H. Muwanwella, L. Pfeifer, X. Liu, S. M. Zakeeruddin, Y. Huang, M. Grätzel, M. T. Sajjad, M. Abdi-Jalebi, Enhancing Indoor Photovoltaic Efficiency to 37.6% Through Triple Passivation Reassembly and n-Type to p-Type Modulation in Wide Bandgap Perovskites. Adv. Funct. Mater. 2025, 2502152.

Loss Analysis of Halide-Perovskite Solar Cells Deposited on Textured Substrates
Wang, Y., Hüpkes, J., Ravishankar, S., Klingebiel, B. and Kirchartz, T. (2025), Loss Analysis of Halide-Perovskite Solar Cells Deposited on Textured Substrates. Sol. RRL, 9: 2400829.

Toward Understanding the Built-in Field in Perovskite Solar Cellsthrough Layer-by-Layer Surface Photovoltage Measurements
Gutierrez-Partida, E., Rusu, M., Zu, F., Raoufi, M., Diekmann, J., Tokmoldin, N., Warby, J., Menzel, D., Lang, F., Shah, S., Shoaee, S., Korte, L., Unold, T., Koch, N., Kirchartz, T., & Neher, D., Stolterfoht, M. (2025). Toward understanding the built-in field in perovskite solar cells through layer-by-layer surface photovoltage measurements. ACS Applied Materials & Interfaces, 17(7), Article 7.

Solvent-dripping modulated 3D/2D heterostructures for high-performance perovskite solar cells
Chang, X., Azmi, R., Yang, T. et al. Solvent-dripping modulated 3D/2D heterostructures for high-performance perovskite solar cells. Nat Commun 16, 1042 (2025).

Defect chemistry of mixed ionic-electronic conductors under light: halide perovskites as master example
Moia, D., & Maier, J. (2025). Defect chemistry of mixed ionic-electronic conductors under light: Halide perovskites as master example [Preprint]. arXiv.

Efficiency optimization of lead-free CH3NH3SnI3-based perovskite solar cells through material and structural modifications
Alsulami, Q.A., Redoy, R.A. & Wageh, S. Efficiency optimization of lead-free CH3NH3SnI3-based perovskite solar cells through material and structural modifications. Sci Rep 15, 13170 (2025).

A New Approach to Characterize Charge Transport and Hysteresis in Perovskite Solar Cells
Nogueira, G. L.; Lopez-Richard, V.; Meneghetti Jr., L. A.; Hartmann, F.; Graeff, C. F. O., A New Approach to Characterize Charge Transport and Hysteresis in Perovskite Solar Cells, arXiv 2025

Deciphering the interplay between tin vacancies and free carriers in the ion transport of tin-based perovskites
Huerta Hernandez, L.; Lanzetta, L.; Kotowska, A. M.; Yavuz, I.; Kalasariya, N.; Vishal, B.; Gibert-Roca, M.; Piggott, M.; Scurr, D. J.; De Wolf, S.; Stolterfoht, M.; Baran, D. Deciphering the Interplay between Tin Vacancies and Free Carriers in the Ion Transport of Tin-Based Perovskites. Energy Environ. Sci. 2025, DOI:

23.2% efficient low band gap perovskite solar cells with cyanogen management
Perera, W. H. K.; Zhou, Y.; Webb, T.; Trindade, G. F.; Xu, Y.; Zhu, J.; Masteghin, M. G.; Harvey, S. P.; Macdonald, T. J.; Jenatsch, S.; Dai, L.; Sathasivam, S.; Hinder, S. J.; Stranks, S. D.; Jayawardena, K. D. G. I.; Zhao, D.; Zhao, Y.; Zhang, W.; Haque, S. A.; Silva, S. R. P.
Energy Environ. Sci. 2025, 18, 439–453