Enhancing Quantum Dot Full-Color Display Performance Through Black Matrix Width Modulation.
Lin, M. Y., Li, Q.-T., & Li, Y.-L. (2024).
IEEE Photonics Technology Letters, 36, 1730–1733. https://doi.org/10.1109/LPT.2024.3450713
This study investigates the impact of black matrix (BM) width on the performance of quantum dot full-color displays. The authors use theoretical calculations and simulations to evaluate how BM width affects crosstalk, the aliasing effect, and color gamut. They find that increasing the BM width from 0 nm to 25 nm can eliminate crosstalk between subpixels and significantly reduce the aliasing effect. This leads to a substantial improvement in color gamut, with the display featuring an Ag/ZnO/Ag structure achieving a color gamut ratio of 100.65% Adobe RGB and a coverage of 87.17%. The study highlights the importance of BM width optimization in quantum dot display design for achieving high image quality and wide color gamut. This research is particularly relevant for applications like small panels and head-mounted displays.
How Setfos was used
Setfos was used to model and optimize all of the MIM (metal-insulator-metal) layer models and to calculate the transmitted spectrum for the subpixels with the MIM layer.